Transient physical forcing of pulsed export of bioreactive material to the deep Sargasso Sea

نویسندگان

  • M. H. Conte
  • T. D. Dickey
  • J. C. Weber
  • R. J. Johnson
  • A. H. Knap
چکیده

Considerable attention has recently been focused on the role of eddies in affecting biogeochemical fluxes and budgets of the Sargasso Sea. In late November 1996, the Bermuda Testbed Mooring (BTM) and Bermuda Atlantic Time Series (BATS) shipboard sampling evidenced a fall phytoplankton bloom at the Bermuda time-series site which was strongly forced by the interplay between seasonal mixed layer destratification and perturbation of mixed layer dynamics due to passage of a warm mesoscale feature. The feature was characterized by clockwise current vector rotation from near the surface to about 200m and a thick, warm, low salinity isothermal layer >180m in depth. Nutrients, chlorophyll fluorescence and pigment profiles indicated high primary production stimulated by enhancement of nutrient entrainment and intermittent deep mixing down to the base of the feature’s isothermal layer. Nearly coincident with the arrival of this productive feature at the BTM site, the Oceanic Flux Program (OFP) sediment traps recorded an abrupt, factor of 2.5 increase in mass flux at 3200m depth. Even more dramatic was the observed increase in flux of labile bioreactive organic matter. Fluxes of primary phytoplankton-derived compounds increased by factors of 7–30, bacteria-derived compounds by 6–9, and early degradation products of sterols by a factor of 10. The covariation of early degradation products and bacteria-derived compounds with phytoplankton-derived compounds indicated that the settling phytoplankton bloom material contained elevated bacterial populations and was undergoing active degradation when it entered the 3200m trap cup. The increase in the flux of bulk components, especially the residual silicate fraction, and refractory organic compounds clearly preceded the main pulse of the labile, surface-derived phytoplankton organic material. The coincident increase in the flux of refractory and zooplankton-derived compounds suggests that in the initial stage of the deep flux event, the mass flux increased largely as a result of an increase in the flux of refractory materials scavenged from the water column and repackaged into sinking particles and increased zooplankton inputs. These results imply that biological reprocessing of flux material within the water column acts to enhance the coupling between the surface and deep ocean environments. Our results show that transient, upper ocean forcing associated with variable upper ocean physical structure—which includes but is not limited to eddies—and variable meteorological forcing can have an enormous effect on the export flux of bioreactive organic material. The importance of pulsed fluxes of bioreactive material arising from transient physical forcing to the long-term average is not presently known. However, the occurrence of episodic high flux events throughout the OFP time-series record (also inferred from BTM time-series) suggests that such forcing, regardless of g author. Fax: +1-508-457-2193. s: [email protected] (M.H. Conte). front matter r 2003 Elsevier Ltd. All rights reserved. 7-0637(03)00141-9

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased ocean carbon export in the Sargasso Sea linked to climate variability is countered by its enhanced mesopelagic attenuation

Photosynthetic CO2 uptake by oceanic phytoplankton and subsequent export of particulate organic carbon (POC) to the ocean interior comprises a globally significant biological carbon pump, controlled in part by the composition of the planktonic community. The strength and efficiency of this pump depends upon the balance of particle production in the euphotic zone and remineralization of those pa...

متن کامل

Enhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)

The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...

متن کامل

Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus.

Phytoplankton alter their biochemical composition according to nutrient availability, such that their bulk elemental composition varies across oceanic provinces. However, the links between plankton biochemical composition and variation in biogeochemical cycling of nutrients remain largely unknown. In a survey of phytoplankton phosphorus stress in the western North Atlantic, we found that phytop...

متن کامل

Biogeochemistry of total organic carbon and nitrogen in the Sargasso Sea: control by convective overturn

The contributions of total organic carbon and nitrogen to elemental cycling in the surface layer of the Sargasso Sea are evaluated using a 5-yr time-series data set (1994}1998). Surface-layer total organic carbon (TOC) and total organic nitrogen (TON) concentrations ranged from 60 to 70 M C and 4 to 5.5 M N seasonally, resulting in a mean C :Nmolar ratio of 14.4$2.2. The highest surface concent...

متن کامل

Becoming-Bertha: Virtual Difference and Repetition in Postcolonial ‘Writing Back’, a Deleuzian Reading of Jean Rhys’s Wide Sargasso Sea

Critical responses to Wide Sargasso Sea have seized upon Rhys’s novel as an exemplary model of writing back. Looking beyond the actual repetitions which recall Brontë’s text, I explore Rhys’s novel as an expression of virtual difference and becomings that exemplify Deleuze’s three syntheses of time. Elaborating the processes of becoming that Deleuze’s third synthesis depicts, Antoinette’s fate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003